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Abstract
This paper reports our experience of providing lightweight
correctness guarantees to an open-source Rust-based OS, The-
seus. First, we report new developments in intralingual design
that leverage Rust’s type system to enforce invariants at com-
pile time, trusting the Rust compiler. Second, we develop a
hybrid proof approach that combines formal verification, type
checking, and informal reasoning. By lessening the strength
of correctness guarantees, this hybrid approach substantially
lowers the proof burden. We share our experience of applying
this approach to the memory subsystem of Theseus, demon-
strate its utility, and quantify its reduced proof effort.

1 Introduction
Correctness is a desirable yet challenging property to achieve
for complex systems software like an operating system (OS).
A key technology for correctness is formal verification. In
recent years, various formal verification approaches have
emerged that make different tradeoffs between expressive-
ness and proof burden, i.e., what can be proven vs. how dif-
ficult it is to generate those proofs. However, even so-called
push-button approaches [25, 26, 28, 29, 33] still suffer from
significant proof burdens, even for very small software sys-
tems and for proving very limited invariants, mainly restricted
to the decidable portion of first-order logic.

In this paper, we present our recent experience in exploring
new ways to ensure OS correctness. Towards achieving high
expressiveness with low proof burden, we relax the strength
of correctness guarantees. We observe that while full formal
verification is desirable, the type system of the implementa-
tion language, i.e., Rust, combined with informal reasoning
can also be used to provide weaker yet distinctly useful guar-
antees.

In §3, we further develop the idea of intralingual design
introduced by Theseus OS [8], extending its reach with new
techniques. Intralingual design uses language-level features
to enforce invariants with the compiler. We analyze its limits,
showing that the invariants presented in [8] were based on
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an incomplete foundation. While Rust’s ownership model
guarantees that an instance of a linear type has a single owner,
it cannot guarantee there is no unexpected overlap between the
actual values of two separate instances of the same linear type.
When a linear type instance represents a system resource, an
overlap would let users access the same resource concurrently
using different instances. This shortcoming led to an insidious
bug in the memory subsystem of Theseus, for which we
reported and contributed a solution.

Therefore, we advocate a hybrid approach (§4) that com-
bines intralingual design, formal verification, and informal
reasoning to achieve lightweight correctness for OSes. We
deem it lightweight not only because it requires much less
effort compared to conventional formal verification, but also
because its strength of guarantee is weaker due to its use of
informal reasoning and trust of the implementation language.

In §5, we report our experience applying this approach
to a revision of the memory subsystem of Theseus, which
provides stronger guarantees of the original invariants and
eliminates several classes of insidious bugs. We also share
our experience using burgeoning formal verification tools for
Rust programs, specifically Prusti [6]. Our experience in §6
shows that the hybrid approach has low development burden
and negligible performance overhead.

In summary, this paper makes three contributions:
• We present a new set of techniques to expand the scope

and extend the reach of intralingual design.
• We describe a hybrid proof approach that combines type

checking (as used by intralingual design), formal, and in-
formal reasoning for improving OS correctness.

• We report our experience applying this low-effort approach
to the memory subsystem of Theseus.

2 Background and Related Work
Singularity [14] popularized linear types in OS design and
used them for zero-copy sharing of heap memory across
software-isolated domains. Recent works have used Rust’s
linear type system1 for features such as lightweight fault iso-
lation [24], zero-copy communication [27], compiler-checked
session types [15], and decentralized resource management
[8]. The authors of [7] also discussed the potential of using
Rust for static information flow control and automatic pro-
gram state manipulation. Linear Dafny [19] used linear types
as a complementary approach to SMT solving and removed
memory reasoning from verification conditions. In contrast,

1Strictly speaking, Rust employs an affine type system, which relaxes the
restrictions of true linear type systems to also permit weakening.
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our work designs and implements the OS such that the Rust
type system can provide guarantees that go beyond safety, in
collaboration with formal verification.

In building the Verve OS [32], Yang and Hawblitzel cre-
atively combined formal verification and a safe implementa-
tion language by dividing the OS into a lower core Nucleus
and a higher kernel. They applied formal verification to the
Nucleus, implemented in assembly, for safety and correct-
ness, while relying on the implementation language (C#) for
the kernel’s safety. Our hybrid approach does not aim for
a clear split between the verified and unverified portions of
the OS. Instead, we use a combination of proof techniques
in whichever subsystem we aim to prove an invariant about,
pairing the correctness property with the proof technique best
suited to it.

Many have leveraged Rust’s type system to ensure correct-
ness beyond just safety issues. We next overview these ideas
before developing them further in §3.

Linear Types for Pairwise Operations: Many operations
must always occur in pairs, e.g., memory allocation/deallo-
cation, lock acquisition/release, and reference count incre-
ment/decrement. Manually keeping track of pairwise opera-
tions is difficult since the second operation can occur much
later and in different parts of the code than the first. Mismatch-
ings of such pairwise operations are common in the Linux
kernel [20, 21, 31]. This problem can be solved by using
linear types, placing the first pairwise operation in the con-
structor and the second in the destructor. Rust itself follows
this design pattern when providing types for heap-allocated
data structures (Vec<T> [4]), locks (MutexGuard<T> [3]), and
reference-counted pointers (Arc<T> [2]).

Linear Types as Unforgeable and Unique Capabilities: In
Rust, an instance of a linear type is a unique and unforgeable
capability as long as it does not implement the Clone trait,
meaning it cannot be duplicated [17, 24]. The ownership
of such an instance automatically confers the right to use it
without the need for runtime checks of its authenticity [10,
24]. Since the capability has a linear type, it has a single
owner, and we can use Rust’s built-in ownership rules to
prevent data races and automatically insert resource cleanup
code. In §3.1, we take inspiration from this idea by using
linear-type instances as representations of OS resources.

Linear Types for Statically-Enforced State Machines: A
linear type system can prevent incorrect state machine tran-
sitions at compile time by implementing the state machine
using behavioral type techniques, e.g., typestates and session
types. When combined with linear types, a typestate protocol
can be statically validated [10], imposing no runtime over-
head.

3 Intralingual Design
Intralingual design [8] aims to maximize the compiler’s role
in enforcing correctness by leveraging programming language

1 // Pages is a representation of a range of virtual pages.

2 struct Pages<S: State> {

3 range: RangeInclusive<usize>

4 }

5 // The possible states a Pages instance can be in.

6 enum State {

7 Free,

8 Allocated,

9 Mapped,

10 Unmapped

11 }

12 // Only Pages in the Mapped state have memory access functions.

13 impl Pages<Mapped> {

14 pub fn write(&mut self, data: [u8]);

15 pub fn read(&self) -> &[u8];

16 fn unmap(self) -> Pages<Unmapped>;

17 }

18
19 impl<S: State> Drop for Pages<S> {

20 fn drop(&mut self) {

21 match S {

22 State::Free => {

23 // Re-take ownership of the pages by replacing it

24 // with an empty range; return it to page allocator.

25 let pages = replace(&mut self, Pages::empty());

26 free_pages_list.insert(pages);

27 }

28 State::Mapped => {

29 // PTE(s) have been cleared, so we transition

30 // the Pages to the Unmapped state.

31 let pages = replace(&mut self, Pages::empty());

32 pages.unmap(); // Drop the returned Pages<Unmapped>

33 } ...

34 }

35 }

36 }

Listing 1. An example of using an IRS to manage virtual memory. A
Pages instance is a representation of a range of pages, which can be
in one of four states. When a Pages<Mapped> instance is dropped,
it is eventually returned to the Free state and stored in the list of
free pages. The code has been simplified for brevity/readability.

features, namely type systems, to more precisely convey sys-
tem requirements to the compiler. In other words, it encodes
the requirements into the implementation itself, such that they
can be enforced by the compiler. Many requirements can-
not be so encoded because the type system is not expressive
enough to convey them. We categorize these requirements
as extralingual. Our objective herein is to build upon the
foundation provided by recent works (§2) and introduce a
systematic methodology for incorporating linear types and
other type-based techniques into low-level system design.

3.1 Intralingual Representation System
We present an Intralingual Representation System (IRS)

that shifts some of the responsibility of managing system
resources from the OS at runtime into the compiler. Typically,
an OS creates software objects to represent physical or ab-
stract resources, e.g., objects of struct page representing
physical frames in Linux. The IRS combines the represen-
tation of a resource with the authority to use it, via linear
types: the ownership of the linear-type instance denotes the
sole authority to use the resource. We call this instance a
representation of the resource. Representations in an IRS are
checked by the compiler, which means that (i) there is only
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ever one mutable reference to the representation at a time,
and (ii) access to the representation is governed by the rules
conveyed via the type system. Strongly-typed languages like
Rust already use linear type instances as a limited form of
representations for memory objects, but an IRS extends this
to apply representation types to arbitrary system resources
beyond just memory.

Changing Access Rights via Typestates. In an IRS, the
access rights of a representation are defined by the publicly-
visible methods of its type. Each distinct set of access rights
is represented by a typestate, and the access rights of the
representation change upon state transitions. A state transi-
tion method takes a representation as input, consumes it, and
changes its state. For example, in Listing 1, a Pages instance
is a representation that can be in one of four states: Free,
Allocated, Mapped, or Unmapped (L6); its methods transi-
tion the representation between these states, e.g., unmap()
in L16. The compiler can enforce that the representation is
accessed in accordance to the restrictions of its current state.
For example, in the Free, Allocated, and Unmapped states,
page table entries (PTEs) are not set up for the given pages,
so the Pages representation cannot be used to access the
underlying memory range. This is statically enforced by im-
plementing the read() and write() methods only for Pages
in the Mapped typestate (L14).

Delegation via Ownership Transfer, Sharing, Borrowing.
In an IRS, a representation is a singleton instance with either
one exclusive owner or multiple owners that can only mutably
access it through a mutual exclusion mechanism. Both cases
uphold the Rust invariant of only one mutable reference to a
type instance existing at once. An owner can conveniently del-
egate authority by granting access to the representation in one
of three ways: (i) transferring ownership to a new owner who
gains full exclusive access rights, (ii) sharing ownership via a
reference-counted smart pointer so multiple parties can jointly
co-own the representation, or (iii) temporary (scoped) lending
to a borrower that can access the representation through a
reference.

Returning Representations via Automatic Destructors.
We can shift the complex responsibility of inserting correctly-
ordered cleanup sequences into the compiler by placing all
cleanup code in a linear type’s destructor (a Rust Drop han-
dler). This is important for representations that represent phys-
ical resources (e.g., physical frames) that should never be de-
stroyed: these representations must be returned to the OS for
future use. With typestates, a representation can have multiple
drop handlers, one for each state; each state’s drop handler
undoes any changes made when entering that state, reverting
the representation to its previous state. The drop handler for
the initial state finally returns the instance back to the OS for
storage. For example, in Listing 1, the drop handler for Pages
in the Mapped state removes the PTEs and converts it to the

Unmapped state (L28). Then, each predecessor state’s drop
handler is iteratively invoked until the Pages instance returns
to the Free state, upon which the Pages<Free> instance is
returned to an redblack-tree of free page chunks maintained
by the page allocator (L22).

Representation vs. Capability. The notion of a represen-
tation may remind readers of that of a capability. Like a
capability, a representation is also unforgeable and delegable.
Unlike a capability, a representation is unique in that no two
representations exist in the system for the same resource. This
precludes derivation in which multiple copies of a capability,
with varying access rights, exist at the same time. Importantly,
language-level mechanisms are not sufficient to implement
all features of a capability system as reported by [23, 30].
Redleaf [24] uses instances of linear types to implement fine-
grained access control between isolated domains, but doesn’t
attempt to build a full-featured capability system.

3.2 Linear Types as Proof of Work
The other main way we use linear types is to indicate that a
certain function has been executed, by returning a dedicated
type instance from the function. In this manner, a linear type
instance no longer represents a spatial resource (as in types-
tates), but rather a proof of a temporal action having occurred.
A linear type used for this purpose is simply a type that can
only be instantiated by a single function that performs the
required "work". To prevent instances of this type from being
created anywhere, we make sure it is composed of a private
inner type that is inaccessible outside of the type’s module.

Combining linear types as a proof of work with strongly-
typed function interfaces can statically enforce an order be-
tween “stages” of operations. That is, we can create a chain of
functions where one function creates and returns an instance
of a linear type to be consumed by the next function, effec-
tively requiring each instance of a linear type to be used in the
order it is created for progress to be made. In fact, this pattern
of instantiation and then consumption lies at the core of many
ways in which we use linear types (§2). The difference here
is in what the type instance represents.

For example, the Page Table Entry (PTE) unmap function
of Theseus returns an UnmapResult instance which stores
information about physical frames that have just been un-
mapped. into_unmapped_frames() recreates a representation
for those frames by consuming the UnmapResult instance
as a proof that those frames are now free. It can be invoked
much later than when the PTE is cleared, and the frames
representation will not be recreated until then, ensuring its
uniqueness. UnmapResult here is not a representation to the
newly unmapped physical frames. It does not exist in multi-
ple states, and provides no access to any resource, memory
in this example. Instead, it is a single-use type instance that
represents the clearing of PTEs, and so the typestate pattern
is not applicable here.
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3.3 Intralingual Hardware Abstraction Layers
An intralingual Hardware Abstraction Layer (HAL) enforces
datasheet-provided rules for communicating with a hardware
device without any runtime checks. We use a struct to repre-
sent the layout of memory-mapped I/O (MMIO) registers and
other I/O data structures, which can then be overlaid atop a
region of memory. This ensures that every register and bitfield
is always accessed in a type-safe manner at its correct offset
(and alignment) within the underlying memory region. Our
approach precludes the unsafe pointer arithmetic commonly
used to access MMIO registers, which cannot be reasoned
about by the compiler.

Using type-system techniques, we can further prevent in-
correct reads and writes to MMIO, as listed below:

1. Type wrappers on struct fields can enforce volatile ac-
cess and read-only or write-only restrictions.

2. Fields marked as reserved have private visibility in the
struct, rendering them inaccessible outside the HAL.

3. Only fields where every bit is accessible, without any
restrictions, are publicly visible.

4. Fields with restrictions on which values can be written
to them are only accessible through struct methods. An
enum encodes the set of valid values and must be passed
as the method argument, forbidding arbitrary raw values
at compile time.

5. Using linear types as a proof of work, we can statically
enforce an order of operations between successive reads
and writes of different registers or even between disjoint
bitfields of the same register.

3.4 Limitations of Intralingual Design
Intralingual design, while powerful, has many shortcomings
stemming from its reliance on the language’s type system.
First, it is not as expressive as many formal verification tech-
niques due to the limited invariants that can be enforced by
the type system. Generally, it is incapable of proving any
algorithmic property, e.g., that a sort() function actually
performs sorting.

Moreover, it also cannot reason about unrestricted types:
where they originated from or the values they store. This lim-
itation is fundamental in an OS, where in order to interact
with hardware, the lowest layers must use built-in unrestricted
data types, i.e., raw or primitive types, such as unsigned inte-
gers, e.g., u32 in Rust. The type system alone cannot provide
any guarantees about the correctness of values read from or
written to the lowest layer of raw primitive types.

Finally, the IRS design uses a linear-type instance to repre-
sent an OS resource. A linear type system itself cannot guaran-
tee uniqueness of the resource represented. This goes beyond
the intralingual (type-level) uniqueness based on Rust’s own-
ership model: no two variables of the same linear type can
own the same value (memory object), but there is no guar-
antee that the resources represented by the values (memory

objects) do not overlap. If there is an overlap, then multiple
instances of this type can give access to the same resource,
i.e., the overlapping parts. This limitation underlies our dis-
covery of an important bug in Theseus’s memory subsystem,
discussed in §5.4.

4 Hybrid Approach for Correctness
To overcome the limitations of intralingual design and the
high proof burden of formal verification, we argue for a hy-
brid approach that pairs a correctness property with a proof
technique. When choosing the proof technique, we consider
the tradeoff between proof effort, strength of guarantee, and
performance. Our hybrid approach combines formal verifi-
cation, type checking (used by intralingual design), manual
code review, and prose proofs. We employ SMT-based formal
verification for Rust, i.e., Prusti [6], for only select properties,
while embracing informal reasoning, especially prose proofs,
to prove higher-level invariants. Prose proofs can “stitch” to-
gether the invariants proven by different proof techniques
(and those specified in different languages) without requiring
a unified formal specification; avoiding this requirement sig-
nificantly lowers the proof burden. Within the prose proof,
we use natural language to express the invariants proven with
each technique and justify how these invariants combine to-
gether to imply a high-level invariant.

Given that a linear type system itself cannot guarantee
uniqueness of the resource represented by an instance, and
that such uniqueness is the foundation of an IRS (§3.1), the
uniqueness of a linear-type instance is an excellent candidate
for formal verification. To formally verify that a linear-type
instance is unique, we only need to formally verify that the
type’s constructors will never create instances that represent
overlapping resources.

4.1 Minimize Proof Burden
Because formal verification is the main source of proof bur-
den in our hybrid approach, we leverage the type system to
bootstrap formally-verified results in the following ways: (i)
An instance of a composite type is unique if its members are
unique. Therefore, it is unnecessary to formally verify the in-
stance uniqueness of every representation in an IRS. Instead,
by verifying the instance uniqueness of select basic types in
the system, e.g., Pages in Listing 1, we can rely on the type
system to ensure the instance uniqueness of a type composed
from these basic types. For example, a representation of a
device’s MMIO registers is composed of a Pages<Mapped>
instance, and so is proven unique without formal verification
using this property. (ii) By formally verifying generic code,
the verified property is also true for its specific instances. In
addition to generic data structures, we can also use gener-
ics when verifying methods of types that represent similar
resources.
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4.2 Intralingual Specifications
Both intralingual designs and prose proofs may make type-
based assumptions. We leverage Rust’s language mechanisms
to specify these assumptions so that they can be checked
at compile time. The type-based assumptions that occur fre-
quently, in our experience, include but are not limited to: (i)
a type does not implement certain traits, (ii) a type is com-
posed of another type, (iii) a function consumes an instance
of a type, (iv) a type’s inner fields are private. For example,
instances of the Pages type in Listing 1 need to be unique. A
proof of this uniqueness requires that the type is linear and
doesn’t expose its inner fields. These requirements can be
coded by not implementing the Clone and DerefMut traits
for Pages, and by setting its range field to private, respec-
tively. A change in the codebase, e.g., a heedless developer
implementing Clone for Pages, could inadvertently break
the proof of uniqueness. Since these changes do not violate
Rust typing rules, the compiler cannot catch them.

To check such type-based assumptions at compile time, we
employ static assertions that can be organized in a separate file
from the code base. These assertions generate code that aborts
compilation if the assertion is not satisfied. For example, to
prevent implementation of traits for the Pages type, we can
add this line to Listing 1:

assert_not_impl_any!(Pages: DerefMut, Clone);

These static assertions constitute an intralingual specification
of type-based assumptions.

4.3 Performance vs. Verification Effort
Because type checking happens at compile time, most in-
tralingual design ideas do not incur any runtime overhead.
However, an IRS design can cause runtime overhead if we
push intralingual design to its extreme so that the maximum
amount of code is written such that its correctness can be
reasoned about by the compiler. In such a design, all physi-
cal resources are represented at their finest granularity using
linear type instances that are never destroyed (dropped), and
the OS stores these instances (representations) in a data struc-
ture. This design is not always practical due to the additional
time to store and search for a representation, and because a
representation may need to be destroyed if the resource it
represents no longer exists, e.g., hot-plugging of memory. In
the former case, the overhead can be avoided if we decide
the additional proof effort to recreate a representation after
it is dropped is acceptable. In the latter case, we would ad-
ditionally verify that a representation’s drop handler updates
system bookkeeping state so that the representations can be
recreated if a device is plugged back in.

For example, a completely intralingual page table design
would use a linear PTEs type, an instance of which owns
the memory that hosts a set of page table entries (PTEs) and
also the Frames instance representing the frames mapped
by those PTEs. The map/unmap functions would search a

data structure for the PTEs instance using type-safe code
understood by the compiler. This design increases memory
use due to storing all representations as fine-grained software
objects and incurs extra cycles due to searching for PTEs.

The design we settled on for Theseus avoids these over-
heads at the cost of additional verification effort. We rep-
resent a page table as a single linear-type instance and not
as a collection of PTEs; the extralingual page table walk to
find the PTE is part of the HAL. The mapping procedure
forgets Frames<Mapped> instances to avoid the overhead of
searching for them when unmapping. Instead, the function
that unmaps and clears a PTE returns an UnmapResult, which
acts as proof of work that the frames have been unmapped;
then, a verified function recreates the Frames instance from
the UnmapResult.

5 Case Study: Theseus Memory Management
We next report our experience of applying intralingual design
and the hybrid approach to the memory subsystem of Theseus.

5.1 Intralingual Design of the Memory Subsystem
We redesigned portions of the memory subsystem of The-
seus in accordance with intralingual design patterns (§3).
The functions to walk the page table and update PTEs are
categorized as part of the intralingual HAL of the memory
subsystem; a PTE is always manipulated through a type-safe
interface. We use an IRS to create a Frames and Pages type,
instances of which are the unique representation of a region
of physical or virtual memory, respectively. With typestate
programming, we create four possible states for instances
of the Frames and Pages types: Free, Allocated, Mapped,
and Unmapped. Pages<Mapped> instances (which represent
accessible memory) are used according to the rules of the Rust
type system: one mutable reference or multiple immutable
references, which corresponds to a single writer or multiple
readers to the underlying memory, but not both at the same
time. A detailed code example of the Pages type is given in
Listing 1.

5.2 Bijective Mapping Invariant
The bijective mapping invariant of Theseus states:

Invariant 1 (Bijective Mapping). Each page in the virtual
address space of the system can only be mapped to one frame
of the physical address space, and vice versa.

This invariant can be equivalently restated as “a frame can
only be present in a single PTE”. This prevents extralingual
aliasing, which is necessary to provide memory isolation
and safety for all system memory, not just the built-in Rust
support for safe heap and stack memory. Isolation in Theseus
without the use of hardware address spaces relies upon this
invariant always being upheld.

The memory subsystem of Theseus only adds a PTE when
creating a Pages<Mapped> instance, and only removes it
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when dropping the same instance. Thus, proving the bijective
mapping invariant necessitates proving the correct construc-
tion and destruction of a Pages<Mapped> instance.

5.3 Proof Sketch
We use our hybrid approach for correctness (§4) to present
a prose proof of the bijective mapping invariant, wherein
we explicitly state where each proof technique is used. We
list the Lemmas required to prove the invariant, and next to
each Lemma we list the techniques used to prove it: formal
verification (F), the type system (T), or manual checks (M). We
use a prose proof (P) to tie multiple techniques together. Our
proof [1] is based on the following four Lemmas.

Lemma 1. Frames and Pages instances are unique. [F, T, M, P]
Lemma 2. A Pages<Mapped> instance can only be created
by taking ownership of both a Pages<Allocated> instance
and a Frames<Allocated> instance. [T]
Lemma 3. PTEs can only be manipulated through the mem-
ory subsystem’s map and unmap functions. [T, M, P]
Lemma 4. Creating a Pages<Mapped> instance adds PTEs
only for the given pages and frames; dropping it removes
them. [M]

Lemma 1 ensures that, at the time of creation of a
Pages<Mapped>, the representation of the pages and frames
that are about to be mapped are unique. Lemma 2 ensures
that the pages/frames cannot be used for any other mapping
while this mapping exists. Lemma 3 ensures that a mapping
cannot be created in a way the circumvents the guarantees
provided by Pages<Mapped>. Lemma 4 ensures that software
state accurately reflects hardware state, such that the compiler
can enforce invariants about page table contents. We do not
reason about TLB shootdowns in our proof, though unmap()
does send them to prevent the caching of invalid mappings in
hardware that are not represented in software (Lemma 4).

5.4 Proof of Lemma 1: Bug Revealed
The proof of Lemma 1 greatly increases the strength of guar-
antee of the bijective mapping invariant. To prove this Lemma,
we introduce the linear type Chunk, a non-Cloneable wrap-
per around RangeInclusive<usize>, and formally verify
all methods that create or mutate a Chunk to ensure any two
Chunk instances from the same allocator cannot have over-
lapping ranges. We make its inner field private to prevent
mutable access outside of its methods, and manually check
that a Chunk instance is only mutably accessed in its verified
methods. These joint properties of Chunk prove that every
instance is unique. Both Frames and Pages are composed of
only the Chunk type; a static assertion checks that this com-
position relationship always holds. Consequently, Frames
and Pages are unique via composition, ensured by the Rust
language – an example of how the type system can extend
formally-verified invariants to other types (§4.1).

The original Theseus relied on manual checks in place of
formal verification to prove Lemma 1 because uniqueness is
beyond the scope of intralingual design. In the frame alloca-
tor bookkeeping code, we discovered a bug that led to the
instantiation of overlapping Frames instances, violating the
bijective mapping invariant. This bug only manifested in a
very particular code path that had not occurred in the four
years that the frame allocator code had been in use. It stalled
network driver development for over one month, motivating
us to explore ways to incorporate formal verification into an
intralingual system.

5.5 Coping with Prusti Limitations
We chose Prusti [6] as our verification tool. Compared to
other tools, such as Verus [18], Prusti is more mature in
development and documentation [5].

When we initially wrote the verified portions of the frame
and page allocators, we had to overcome certain limitations
of Prusti to better balance verification effort and system per-
formance, as discussed in §4.3. One such limitation was that
Prusti did not support comparison operations for user-defined
types in function specifications. This posed an issue because a
major strength of Rust lies in its zero-cost abstractions, often
realized through the newtype wrapper pattern. Rather than
maintain two sets of identical data, one as a primitive type
we could use in verified code and the other as a newtype
used within the rest of Theseus, we implemented our own
comparison operators for the newtype. This increased our
code size, but we were able to verify code at a higher level
of abstraction and without the overhead of maintaining two
copies of the same data. Another limitation of Prusti was its
incomplete support for Rust generics. Our first attempts to
implement generic data structures that could be used within
both the page and frame allocator resulted in Prusti panics.
We had to duplicate code within our allocators, increasing our
code size and verification times.

After completing a first implementation with our
workarounds, we reported our findings to the Prusti devel-
opers, who then fixed these issues in a timely manner. This
confirmed our understanding that these limitations were not
fundamental to our approach or to Rust-based verification
tools, but rather a result of using a tool still under active de-
velopment. After applying the provided fixes, we were able
to easily use newtypes and generic data structures within our
code, allowing for verified code reuse and reducing our verifi-
cation effort. For future work, we will further consolidate the
verified code to create a generic chunk allocator that can be
used by both the Pages and Frames allocation code.

6 Evaluation
We evaluate the performance of the new memory subsystem
of Theseus and quantify the verification effort. Our objec-
tive is to find any performance differences caused by code
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Figure 1. The individual time to map, remap, and unmap a 4 KiB
page does not increase when verification is added to Theseus. The
results presented are the mean times for 1 page, with the error bars
representing the standard deviation.

changes resulting from the verification process. Additionally,
we assess the proof effort needed to formally verify sections
of the frame/page allocator to gauge the "lightweightedness"
of the hybrid approach.

6.1 Performance comparison
We found that Theseus with formally-verified code (Verified
Theseus) performed similarly to the original Theseus that
had no verified code. We ran two memory subsystem mi-
crobenchmarks on an Intel(R) Xeon(R) Gold 6252N CPU at
2.30 GHz with hyperthreading disabled. The first microbench-
mark was a Rust version of LMBench’s [22] memory map.
In this benchmark, a 4 KiB page is mapped, written, and
unmapped 100,000 times. Both versions of Theseus showed
identical performance, a mean time of 1.99 𝜇s with a standard
deviation less than the timer period (42 ns). The second mi-
crobenchmark was taken from the original Theseus paper [8],
which separately measures the time to map a page, remap it,
and then unmap it, with an increasing number of mappings.
Figure 1 shows no significant difference between the two
versions.

6.2 Verification Effort
Table 1 reports the size (in SLOC) and verification times for
the Theseus memory subsystem described in §5. We find that
the proof effort is magnitudes lower than end-to-end formally
verified systems, and verification times are within minutes.
All verification times were measured using the Prusti 2023-08-
22 release running on Ubuntu 20.04 on an Intel Core i7-1260P
CPU at 2.5 GHz.

The formally-verified portion of the memory subsystem
consists of four parts: (i) Prusti external specifications for
types from the Rust core library, (ii) generic data structures,
(iii) portions of the frame allocator code that include methods

Spec Impl Proof Verification
Time

(SLOC) (s)
External Spec
Option 48 0 0 0
Result 33 0 0 0
PartialOrd 41 0 0 0
RangeInclusive 24 0 0 0
Data Structures
Linked List 38 167 0 16.695
Static Array 22 91 3 18.22
Frame Allocator 120 520 7 48.428
Page Allocator 117 520 7 52.162
Total 443 1298 17 135.505

Table 1. Code size and verification times for formally-verified por-
tions of the frame and page allocator. The proof SLOC are the loop
body invariants that are manually added.

to create and modify a Chunk, (iv) portions of the page allo-
cator code, nearly identical to that of the frame allocator. We
can further reduce our code size by consolidating the page
and frame allocator using generics as discussed in §5.5.

Proof Effort: Our proof-to-implementation ratio is 1:76.
This is lower than the 10:1 proof-to-implementation ratio of
an end-to-end verified page table implementation written in
Rust [9], by two orders of magnitude. Other fully verified
works reported proof-to-implementation ratios ranging from
five to twenty [11–13, 16].

This minimal proof effort is a direct result of our hybrid
approach, and comes at the cost of lower strength of guarantee
and a larger TCB. We only use SMT verification for one
property (uniqueness), and use other techniques to reason
about the correctness of writes to the page table.

Maintainability: We only need to re-verify our code if
a change occurs within the chunk allocator module. In our
experience, it is easy to experiment with the design of the
chunk allocator since the verification time is so low, around
two minutes. Most importantly, changing any code outside of
the chunk allocator module does not require re-verification.
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