

Modular Exponentiation Algorithm Analysis
for Energy Consumption and Performance

Lin Zhong

lzhong@princeton.edu
Technical Report CE-01-ZJL

Dept. of Electrical Engineering
Princeton University

Abstract

Modular Exponentiation for very large integers is the core of many modern cryptographic
algorithms. Figure 0 shows how modular exponentiation is implemented in the essence of
most algorithms. The basic building blocks are 1) modular algorithm, 2) multiplication of
short integers and 3) addition of short integers. In this project, how the building blocks
build up the modular exponentiation in popular algorithms is studied in terms of their
complexity, parallelism and latency. Insights are found for tradeoff between energy
consumption and performance for cryptosystem implementation. Moreover, the analyses
shed insights for ISA and micro-architecture researches for cryptosystem.

1. Standard Multiplication
Suppose a and b are integers of N bits. ai is the ik bit to 1)1(−+ ki bit of a. bi is the ik bit
to 1)1(−+ ki bit of b. Therefore, ai and bj are integers of k bits. The standard
multiplication algorithm implement s N x N-bit multiplication by dividing N-bit integers

into
k
N

k-bit integers and doing k x k-bit multiplications/additions.

1.1 the Algorithm and Complexity

1.2 The algorithm is showed in Algorithm 1. Let
k
N

s = .

Input: a, b
Output: t = a - b
0. Initially ti : = 0 for all i = 0; 1,…, 2s-1.
1. for i = 0 to s - 1
2. C := 0
3. for j = 0 to s- 1
4. (C, S) :=ti+j + aj* bi + C
5. ti+j := S
6. ti+s := C
7. return (t2s -1t2s-2

… t0)
Algorithm 1. The Standard Multiplication Algorithm

For line 4, we have four arithmetic operations which are shown in the Table 1.1. Let’s
suppose all the operands are assigned to k-bit registers.

+1 t i+j +C => (C, S)
*1 aj * bi =>(H, L)

+2 H+C => C +3 L+S =>(C’, S)
+4 C’+C => C

Table 1.1

It should be noted that H+C will not overflow. The data flow graph for line 4 is showed in
Figure 1.1.

 Figure 0. What’re the building blocks? Figure 1.1

For Algorithm 1, we have 2)(4
k
N

 k x k-bit additions and 2)(
k
N

 k x k-bit multiplications.

The complexity is

)()()()(4)(22 kMul
k
N

kAdd
k
N

NT += (1)

Standard multiplication can be reduced if a=b, which is true in the modular exponentiation
detailed in section 4. For a=b, we have

)1,()(
2
1

)()(
2
1

)()(4)(222 kShift
k
N

kMul
k
N

kAdd
k
N

NT ++≈

1.2 Parallelism Analysis
1.2.1 Without Consideration of Carry-Ins
Now we are going to analyze how much operational parallelism there is. Figure 1.2 shows

the case when 4==
k
N

s .

All the multiplication can be carried out in parallel. To get 12,..,0for −= siti , we have to
add 3 k-bit integers for t1 and t6, 5 k-bit integers for t2 and t5, 7 k-bit integers for t3 and t4.

We can generalize that we have to add 12 +i k-bit integers for 1,..,0for −=
k
N

iti and add

1)1
2

(2 +−− i
k
N

 k-bit integers for 1
2

,..,for −=
k
N

k
N

iti .

+1 *1

+2
+3

+4

ti+j C aj bi

Built from

kxk-bit mul kxk-bit add

NxN-bit mul Modular algorithm

Modular NxN Mul

Built from

Modular Exponentiation

Built from

*

Figure 1.2

a3 a2 a1 a0

b3 b2 b1 b0

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

H L

a0*b0

a1*b0

a2*b0

a3*b0

a0*b1

a1*b1

a2*b1

a3*b1

t3 t2 t1 t0 t7 t6 t5 t4
+ + + + + +

C

C

C

Suppose our adder hardware adds two k-bit integers together each operation and output the
carry- in and sum. The additions of those integers for it can be done in a paralle l way. The
latency-optimized way is to implement them in a sequence of a tree structure. For example,
Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It’s optimal w.r.t the
latency which is proportional to the number of levels the tree has.

More generally, to add w k-bit integers, the tree will have 1−w nodes and 1log 2 +w
levels. If we relax the number of operands for the adder hardware to m instead of 2, the

latency-optimized way is the m-ary tree implementation. The tree will have 





−
−

1
1

m
w

 nodes

and 1log +wm levels. The number of nodes is the indicator of energy consumption while
the number of the levels is the indicator of latency/performance.

Figure 1.3 Binary Tree for a Series of Additions

There is one way to implement Algorithm 1 so that the parallel is more utilized. That is, we

can compute ,1
2

,..,0 , −=
k
N

iti consecutively. If we implement the addition in the tree

way, the latency is)}12(log1){(2 ++ ikAdd for 1,..,0for −=
k
N

iti and

}]1)1
2

(2log{1)[(+−−+ i
k
N

kAdd for 1
2

,.., , −=
k
N

k
N

iti . The total latency due to

addition is ∑ ∏
−

=

−

=

++=++
1

0

1

0
22)(2)12(log)(2)}12(log1{)(2

k
N

i

k
N

i

kAdd
k
N

ikAddikAdd .

+ +

+

+

E1 E2 E3 E4 E5

4 1-bit carry- ins

One k-bit sum

On the other hand, we have

!1log!1
2

log1loglog2loglog)12(log 22

1

1
2

1
2

1
2

1

1
2

1
2

1
2

1

0
2 −






 −−






 −=+−−=−=+ ∏∏∏∏∏

−

=

−

=

−

=

−

=

−

= k
N

k
N

k
N

k
N

iiiii
k
N

i

k
N

i

k
N

i

k
N

i

k
N

i

Applying Stirling’s approximation of n!, we have

1!1log!12log)12(log 22

1

0
2 +−






 −−






 −=+∏

−

= k
N

k
N

k
Ni

k
N

i

11)(log1log
2
1

1
2

)(log1
2

log
2
12

2
2

2
2

+−





 −+






 −






 −−






 −−






 −






 −≈

k
N

k
N

e
k
N

k
N

k
N

e
k
N

k
N

3)1(loglog
2
12

log
2
12

2
22

++−













 −−














 −=

k
N

e
k
N

k
N

k
N

k
N

ek
N

k
Ne

k
N

k
N

k
N

e
k
N

k
N

k
N 2

log)
2

log(log3)2(log
2
12

log
2
1

2
2

2
2

2

=−≈+−





 −+














 −=

Then the latency due to addition is
ek
N

k
N

kAdd
ek
N

k
N

kAdd
4

log)(2)
2

log1()(2
22

=+

Moreover, all the k-bit multiplication can be done in parallel if we have enough hardware
sources. Therefore, the latency for the implementation of Algorithm 1 in this way will be

)(
4

log)(2)(
2

kMul
ek
N

k
N

kAddNLatency += (2)

(2) is significantly less than (1). This means if we utilize the parallelism in Algorithm 1,
the performance could be significantly better. However, as we didn’t reduce the number of
operations in the parallel implementation, (2) still holds for the energy consumption of
Algorithm 1.

1.2.2 Problem of Carry-In
If the adder adds two integers together each time, the carry- in is always 1-bit. Carry- ins
can be taken into consideration with a conditional increment operation (We’ll talk about
this in the conclusion).

If(C =1) increase S by 1.

We showed that we have to add 12 +i k-bit integers for 1,..,0for −=
k
N

iti and add

1)1
2

(2 +−− i
k
N

 k-bit integers for 1
2

,.., , −=
k
N

k
N

iti . The number of carry- ins for

,1,..,1 , −=
k
N

iti is)1(2 −i . That for ,1
2

,.., , −=
k
N

k
N

iti is)
2

(2 i
k
N

− .

If we take all the carry-ins into consideration and treat them as additions, the latency will at
most double for the implementation proposed in 1.2.1.

2. Karatsuba-Ofman Algorithm

Karatsuba-Ofman algorithm keeps on dividing the long integer into two shorter ones of
equal sizes until their lengths are k. Karatsuba-Ofman algorithm gets the multiplication of
two long integers by doing multiplications and additions on their divided parts of the half
length.

2.1 the Algorithm and Complexity
Let a1 and a0 denote the higher and the lower halves of a, respectively. Let b1 and b0
denote the higher and the lower halves of b, respectively.

KORMA(a, b)
1. if(a and b are of more than 2k bits) do

2. t0 : = KORMA(a0, b0) //)
2

(
N

T

3. t2 : = KORMA(a1, b1) //)
2

(
N

T

4. u0 : = KORMA(a1 + a0, b1 + b0)

//)
2

(2)1
2

(
N

Add
N

T ++

5. t1 : = u0 - t0 - t2 //)(2 NAdd

6. else do
7. t0 : = a0*b0
8. t2 : = a1*b1
9. u0 : = (a1 + a0)*(b1 + b0)
10. t1 : = u0 - t0 - t2

11. return (01
2

2 22 ttt
N

N ++) //),2()
2

,(),(NNAdd
N

NShiftNNShift ++

Algorithm 2. Karatsuba-Ofman Algorithm

Let T(N) denote the arithmetic/logic operations needed for NxN-bit multiplication. Then
we have

)
2

,(),(),2()
2

(2)(2)1
2

()
2

(2)(
N

NShiftNNShiftNNAdd
N

AddNAdd
N

T
N

TNT +++++++=

)
2

,(),()(5)1
2

()
2

(2
N

NShiftNNShiftNAdd
N

T
N

T +++++=

Where Add(N) denotes the N x N bit operations. Note that line 11 only requires one 2N x N
addition, which can be achieved with 2 consecutive NxN additions.

On the other hand, if we implement (N/2+1)x(N/2+1) in the following way.

)}
2

(2'*{*)}
2

(2'*{)1
2

(*)1
2

(22 N
bb

N
aa

N
b

N
a

NN

++=++

N
NN

ba
N

b
N

a
N

ab
N

ba 2'*'*)
2

(*)
2

(2*)
2

('*2*)
2

('* 22 +++=

where a’ and b’ are one bit, we have

)2(4)(23)
2

,
2

(2)
2

()1
2

(AddNAddcondition
NN

Shift
N

T
N

T ++++=+

The control-data flow graph for line 4 of Algorithm 2 and computing)1
2

(+
N

Add is

showed in Figure 2.1. The critical path is showed with the thick dashed arrow.

Figure 2.1 +’ is 2-bit addition

Then we have

condition
NN

Shift
N

NShiftNNShiftAddNAdd
N

TNT 3)
2

,
2

(2)
2

,(),()2(4)(7)
2

(3)(++++++=

 (3)

*

)
2

(
N

a)
2

(
N

b
=0

a’

=0

b’

sh-N/2
sh-N/2

+1

+2

+’3

+’4

+’5

incr
e

2-bit carry in N-bit result

+N /2 +N /2

)
2

(1
N

a)
2

(0
N

a)
2

(1
N

b)
2

(0
N

b

KORMA(N/2+1)

If the recurrence stops when a and b are k bits, we have

)2(3*4)
2
2(37)(3)(

1)log(
)log(

1

1)log(
AddNAddkTNT k

Nk
N

i
i

ik
N

−

=

− ++= ∑

conditionkkShift
NN

Shift
NN

ShiftNNShift k
N

k
Nk

N

i
ii

i
k
N

i
ii

i)log()log(
1)log(

1

1

)log(

1

1 3),(3*2)
2

,
2

(35)
2

,
2

2
(3),(+++++ ∑∑

−

=

−

=

−

)2(*
3
4)

2
2(37)(

3log)log(

1

1
3log

Add
k
NNAddkT

k
N k

N

i
i

i 





++






= ∑

=

−

condition
k
N

kkShift
k
NNN

Shift
NN

ShiftNNShift
k
N

i
ii

i
k
N

i
ii

i
3log3log1)log(

1

1

)log(

1

1),(*2)
2

,
2

(35)
2

,
2
2

(3),(





+






++++ ∑∑

−

=

−

=

−

++++





= }),(2)2(

3
4),({

3log

conidtionkkShiftAddkkMul
k
N

),()
2

,
2

(35)
2

,
2

2
(3)

2
2

(37
1)log(

1

1

)log(

1

1

)log(

1

1 NNShift
NN

Shift
NN

Shift
N

Add
k
N

i
ii

i
k
N

i
ii

i
k
N

i
i

i +++ ∑∑∑
−

=

−

=

−

=

−

Let’s assume that)
2

(2)(
N

AddNAdd = (indeed, the NxN addition can be implemented as

two N/2 x N/2 additions in sequence), then we have)(2)
2

2
(

1)log(
kAdd

N
Add

i
k
N

i

+−
= .

Therefore, we have

∑
=

+−−++++





≈

)log(

1

1)log(1
3log

)(237}),(2)2(
3
4),({)(

k
N

i

i
k
N

i kAddconidtionkkShiftAddkkMul
k
NNT

)(14}),(2)2(
3
4),({

3log3log

kAdd
k
NconidtionkkShiftAddkkMul

k
N






++++





≈

)(14),(
3log3log

kAdd
k
N

kkMul
k
N







+






≈

 (4)
Table 2.1 shows the ratio of complexities for Algorithm 1 and Algorithm 2 for N and k of
typical values (The complexity of Mul(k) is assumed to be 3 times that of Add(k)).

)(
)(

NT
NT

KO

STD
N=256 N=512 N=1024 N=2048

k=16 1.30 1.74 2.31 3.08
k=32 0.98 1.30 1.74 2.31
k=64 0.73 0.98 1.30 1.74

Table 2.1

2.2 Parallelism Analysis
Algorithm 2 is very desirable for parallel implementation due to its recurrent nature. As in
section 1, let’s first forget about the carry- ins. All the k-bit multiplication in Algorithm 1
can be done in parallel if we have enough hardware resources. All the W x W-bit
multiplications can be done in parallel with the results from all the W/2 x W/2-bit
multiplications. In line 4 of Algorithm 2, the two additions can be done in parallel.

Figure 2.2 shows the data-flow graph for one recurrent level for Algorithm 2. The critical
path is showed with the dashed arrow.

Figure 2.2 DFG for one recurrence of Algorithm 2 and the critical path

According to Figure 2.2, the latency for KORMA(W) is

)
2

,()(4)
2

()1
2

()(
W

WShiftWAdd
W

Add
W

LatencyWLatency ++++≈

According to Figure 2.1, the latency for KORMA(W/2+1) is

KORMA(N/2+1)
KORMA(N/2) KORMA(N/2)

-

-

Sh(N)

Sh(N/2)

+

+

+N /2 +N /2

)
2

(1
N

a)
2

(0
N

a)
2

(1
N

b)
2

(0
N

b

)2()2()(2)
2

()1
2

(IncrAddWAdd
W

Latency
W

Latency +++=+

Therefore

)
2

(13)
2

()
2

()(6)
2

()(
W

Add
W

Latency
W

AddWAdd
W

LatencyWLatency +≈++≈

)(
2

13
)

2
(kAdd

k
WW

Latency +≈

Therefore we have

)(13)()()22(
2
13

)(2)(
2
13

)()(
log

1log

kAdd
k
N

kMulkAddkN
k

kMulkAdd
k

kMulNLatency
N

ki

i +≈−+=+≈ ∑
+=

 (5)
(5) is significantly less than (4). This means if we utilize the parallelism in Algorithm 2,
the performance could be significantly better. However, as we didn’t reduce the number of
operations in the parallel implementation, (4) still holds for the energy consumption of
Algorithm 2.

If we take all the carry- ins into consideration, the latency will at most double.

For Algorithm 1, we have

)()(
4

log2)(
2

kMulkAdd
ek
N

k
N

NLatency +≈

for the parallel implementation proposed in section 1. The ratio of latencies for the two

algorithms is
ek
N4

log
13
2

2 .Table 2.2 shows the typical values for
ek
N4

log
13
2

2 .

ek
N4

log
13
2

2
k=16 k=32 k=64

N=256 0.89 0.78 0.68
N=512 1.04 0.94 0.83
N=1024 1.20 1.09 0.98
N=2048 1.35 1.24 1.14

Table 2.2 Typical values for
ek
N4

log
13
2

2

Table 2.2 shows that Algorithm 1 is slightly better than Algorithm with respect to how
much parallelism there is. However, Algorithm 2 still has significant advantages over
Algorithm 1 with respect to the energy consumption. Moreover, when N gets larger and
larger, (2) will scale faster than (5) and finally lose its advantage.

3. Modular Multiplication.
Suppose a is a 2N-bit integer and n is a N-bit integer.

3.1 Direct Modular Algorithms

3.1.1 Restoring Division Algorithm and Complexity

Input: a, n
Output: R = a mod n
1. R0 := a
2. n := 2N n),(NNShift
3. for i = 1 to N
4. Ri := R i-1- n)2,2(NNAdd
5. if Ri < 0 then R i := Ri-1 condition
6. n := n/2)1,2(NShift
7. return Rk

Algorithm 3. The Restoring Division Algorithm 1.

The cost for Algorithm 3 is

)}1,2()2,2({),()(NshiftconditionNNAddNNNshiftNT +++=

conditionNkAdd
k
N

conditionNNAddN *)(
2

)(2
2

+≈+≈

Or, it can be implemented so that

)}1,2(
2
3

)2(
2
1

{),())((NshiftconditionNAddNNNshiftNTAverage +++=

conditionNkAdd
k

N
conditionNNAddN *

2
3

)(*
2
3

)(*
2

+≈+≈

Input: a, n
Output: R = a mod n
1. R0 := a
2. n := 2N n //),(NNShift
3. for i = 1 to N
4. if(the most significant bit of Ri-1 is 0) do // condition
5. Ri := R i-1
6. else do Ri := R i-1- n //)2,2(NNAdd
7. if Ri < 0 then R i := Ri-1 // condition
8. n := n/2 //)1,2(NShift
9. return Rk

Algorithm 3.1 The Restoring Division Algorithm 2

3.1.2 Norestoring Division Algorithm and Complexity

Input: a, n
Output: R = a mod n
1. R0 := a
2. n := 2Nn //),(NNShift
3. for i = 1 to N
4. if Ri-1 > 0 // condition
5. then R i := Ri-1- n //)2,2(NNAdd
6. else R i := Ri-1 + n //)2,2(NNAdd
7. n := n/2 //)1,2(NShift
8. if Rk < 0 then R := R + n // condition ,

)2,2(NNAdd
9. return Rk

Algorithm 4. The Nonrestoring Division Algorithm

The cost for Algorithm 4 is

conditionNkAdd
k

N
conditionNNAddNNTAverage *)(*)(*))((

2

+≈+≈

3.1.3 a*b mod n
Suppose the Karatsuba-Ofman algorithm is used for multiplication and the non-restoring
division algorithm is applied for modular. If a, b and n are N-bit integers, the cost for a* b
mod n is

conditionNkAdd
k

N
NMulNT *)()()(

2

++≈

conditionNkAdd
k

N
kAdd

k
N

kkMul
k
N

*)()(14),(
23log3log

++





+






≈

conditionNkAdd
k

N
k
N

kkMul
k
N

*)(}14{),(
23log3log

++





+






≈

3.1.4 Parallelism Analysis
The control-data flow graph for a latency-optimized implementation for the nonrestoring
division algorithm line 4-7 is showed in Figure 3.1

If the algorithm is implemented in the way of figure 3.1,

MuxNkAdd
k
N

MuxNNAddNNTAverage *)(
2

*)(*2))((
2

+≈+≈

The latency will be

MuxNkAdd
k

N
MuxNNAddNNTAverage *)(*)(*))((

2

+=+≈ .

The parallelism in the direct modular algorithms is very limited.

Figure 3.1

3.2 Blakley Algorithm

Blakley's method directly computes a*b mod n by interleaving the shift-add steps of the
multiplication and the shift-subtract steps of the division.

Input: a, b, n
Output: R = a*b mod n
1. R : = 0
2. for i = 0 to N-1
3. R := 2R + aN –1- i*b // conditionNAddNShift ++)()1,(
4. R := R mod n //)(42 NAddcondition +
5. return R

Algorithm 5. The Blakley Algorithm

After line 3, 330 −≤≤ nR . Therefore, line 4 is equal to

4.1 If nR ≥ do // conditionNAdd +)(
4.2 R:=R-n //)(NAdd
4.3 If nR ≥ do // conditionNAdd +)(
4.4 R:=R-n //)(NAdd

conditionNkAdd
k

N
NShiftNconditionNAddNShiftNNTAverage *3)(4)1,(*}3)(4)1,({))((

2

++=++=

 If we ignore all the Shift and condition, we have for Blakley algorithm

)(4))((
2

kAdd
k

N
NTAverage ≈

For Karatsuba-Ofman Algorithm)(}14{),()(
23log3log

kAdd
k

N
k
N

kkMul
k
N

NT +





+






≈

Suppose the cost for Mul(k) is 3 times of the cost for Add(k). Then we have the following
tables for different N and k.

>0

Ri-1

+ - Sh-1

MUX

n

Update n

Ri

)(

)(

NT

NT

KO

Blakley
N=256 N=512 N=1024 N=2048

k=16 2.99 3.19 3.36 3.50
k=32 3.27 3.42 3.55 3.65
k=64 3.48 3.60 3.69 3.76

Table 3.1

Table 3.1 shows that the Karatsuba-Ofman+Non-restoring division is much better than
Blakley with regard to the cost computed as the number of k x k-bit add and
multiplications.

3.2.1 Parallelism Analysis
Blakley Algorithm has little parallelism. In this respect, Blakley Algorithm is much worse
than other choices.

3.3Montgomery Algorithm

a,b and n are N-bit integers. r =2N and gcd(r,n)=1. Let n’ be the integer so that r* r -1-n*

n’=1.

3.3.1 The Algorithm and Complexity

The Montgomery Product Algori thm
u=a*b*r -1 mod n

function MonPro(a, b)
1. t := a*b //)(NMul
2. m := t*n’ mod r //)(NMul
3. u := (t + m*n)/r //)(),2(2)(NAddNNShiftNMul ++
4. if nu ≥ then return u-n //)()(NAddconditionNAdd ++

else return u

The Montgomery Multiplication Algorithm

function ModMul(a, b, n) { n is an odd number}
1. Compute n’ using the extended Euclidean algorithm.
2. a’ := a*r mod n

 //)}1,2()2(
2
1

{),(2 NShiftconditionNAddNNNShift +++

3. x := MonPro(a’, b)

 // conditionNNShiftNAddNMul +++),2(2)(
2
3

)(3

4. return x
Algorithm 6. The Montgomery Multiplication Algorithm

The average cost for Alorithm 6 is

conditionNNShiftNAddNMulNTAverage +++=),2(2)(
2
3

)(3))((

)}1,2()2(
2
1

{),(2 NShiftconditionNAddNNNShift ++++

conditionNNAddNNMul *)(*)(3 ++≈
Compared with the Karatsuba-Ofman and Non-restoring division solution, it has no
complexity advantage. However, we’ll later show that Montgomery algorithm is much
better when a sequence of multiplications is to be performed, which is the case in modular
exponentiation.

3.3.2 Parallelism Analysis
Parallelism in the Montgomery modular multiplication algorithm is very little.

4. Modular Exponentiation

Suppose e is an M-bit integer. x = ae mod n. n is an odd number. n and a are N-bit integers.

Karatsuba-Ofman Algorithm is chosen to do multiplication here. This algorithm requires
much less computational resources than the standard algorithm, although the later is a little
bit better with respect to parallel implementation.

From multiplication to exponentiation, the most popular way is the multiply-and-square
way, which includes m-ary methods.

For binary multiply-and-square algorithm, averagely, we need M NxN-bit modular square
and M/2 NxN modular multiplication. 4.1 and 4.2 detail the modular exponentiations built
from different modular algorithms examined in section 3.

4.1 Karatsuba-Ofman + Nonrestoring division +Multiply-and-Square Algorithm
For Karatsuba-Ofman algorithm, square and multiplication are same in computation.
Therefore, averagely, we need 3M/2 multiplication and 3M/2 non-restoring division.
Therefore, according to section 3, we have












+






+






≈)(}14{),(

2
3

))((
23log3log

kAdd
k

N
k
N

kkMul
k
NM

NTAverage MAS

4.2 Karatsuba-Ofman+Montgomery Modular +Multiply-and-Square Algorithm

function ModExp(a, e, n) f n is an odd number g
1. Compute n’ using the extended Euclidean algorithm.
2. a’ := a* r mod n

 //)}1,2()2(
2
1

{),(2 NShiftconditionNAddNNNShift +++

3. x’ := r mod n
4. for i = M-1 down to 0 do
5. x := MonPro(x’, x’)

 // conditionNNShiftNAddNMul +++),2(2)(
2
3

)(3

6. if ei = 1then x’ := MonPro(a’, x’)

 // conditionNNShiftNAddNMul *2),2(2)(
2
3

)(3 +++

7. x := MonPro(x’,1)
8. return x

Algorithm 7. Montgomery Modular Exponentiation Algorithm

For Algorithm 7, we have

)(*)}(
2
3

)(3{
2

3
))((NAddNNAddNMul

M
NTAverage Mont ++≈

)()(}
2
3

14{),(
2

3 2log3log

kAdd
k

N
kAdd

k
N

k
N

kkMul
k
NM

+











+






+






≈

Obviously, Montgomery Algorithm is much better than the Nonrestoring division
+Multiply-and-Square method..

If we assume the Mul(k) cost is 3 times of the Add(k) cost, we have the following table.

))(/)((NTNTAverage MontMAS N=1024,k=16 N=1024,k=32 N=1024,k=64

M=1 0.96 1.08 1.18
M=4 1.62 2.06 2.58
M=16 1.95 2.67 3.67
M=64 2.05 2.89 4.11
M=256 2.08 2.95 4.23
M=1024 2.09 2.96 4.26

Table 4.1

Table 4.1 clearly demonstrates Montgomery algorithm’s advantage over other choices for
doing a sequence of modular multiplication as in modular exponentiation. The reason is
the cost of line 2 in ModExp is amortized by M. In section 3.3.1, it is not amortized in

ModMul, which is the reason why Montgomery algorithm is not good for doing modular
multiplication.

5. Experiments

Different algorithms for multiplication, modular multiplication and modular
exponentiation are implemented in C. We rely on the compiler to do codes optimization for
parallelism and register assignments.

5.1 Software Power Estimation
People proposed methods to estimate the energy consumption for processor instructions,
which is called the instruction- level power estimation. If the energy consumption for each
instruction is known, switching energy consumption between different instructions, cache
miss and memory accessing energy consumption are taken into consideration, the energy
consumption for the software can be estimated with reasonable accuracy [Tiwari et al,
1994].

Researchers in MIT developed a web-based software profiling tool, JouleTrack, that
estimates the energy consumption of software on three standard processors. The user can
upload the code, select the available processor operating conditions, memory maps, and
compilation options and get a cycle accurate report of the program execution, along with
energy statistics [Joule Track].

We use the StrongARM SA-1100 software profiler to estimate the energy consumption of
our algorithms implemented in C if it is run on StrongARM SA-1100. (StrongARM
processor is proposed for the portable computing devices for which the energy
consumption is critical).

5.2 Multiplication

Profiling Environment:
StrongARM SA-1100 Energy Profiling Results
Operating frequency 206MHz
Operating voltage 1.5 Volts
Simulation level 0

Figure 5.1a shows the energy consumption of Algorithm 1 and. Algorithm 2 for N of
various lengths. Here N denotes the number of digits instead bits. One digit is equal to

10log 2 bits. The k for the Karatsuba-Ofman Algorithm (Algorithm 2) here is fixed as 4.
Figure 5.1b shows the performance, in term of latency, of Algorithm 1 and Algorithm 2 for
N of the same values. It’s obviously that Algorithm 2 is much better.

a. Energy Consumption b. Latency

Figure 5.1

The dashed line is for Algorithm 1 and the solid for Algorithm2

There are overhead codes like variable declaration and initialization. The energy
consumption for the overhead is showed in Figure 5.2a. It is almost linear with respect to
the number of digits.

a. Energy Consumption for the Overhead b. Latency/Energy consumption Correlation

Figure 5.2

5.3 Correlation between Latency and Energy Consumption
For StrongArm SA-1100, we found that the energy consumption is proportional to the
performance in terms of latency. The longer the algorithm keeps the processor running, the
more energy consumption. Taking Figure 5.1 for example, Figure 5.2b shows the ratio of
energy consumption and latency of Algorithm 1 is almost constant for N of various lengths.

However, StrongArm SA-1100 doesn’t utilize the parallelism of the software very much
like VLIW processors do. As showed in section 1, if the processor can utilize the
parallelism in the algorithm, the latency can be significantly reduced while the energy

y = 0.0077x2 + 4.2404x - 135.77

y = 0.0449x2 + 0.2886x + 19.174

0

10000

20000

30000

40000

0 200 400 600 800 1000

of Digits

E
n

er
g

y
co

n
su

m
p

ti
o

n
 in

 u
Jo

u
le

y = 0.0217x2 + 11.908x - 381.29

y = 0.1262x2 + 0.8109x + 53.806

0

10000

20000

30000

40000

0 200 400 600 800 1000

of Digits

L
at

en
cy

 in
 u

S
ec

o
n

d
s

Ratio of energy consumption and latency

y = 0.3561

0

0.5

1

0 200 400 600 800 1000

of DigitsJo
u

le
 p

er
 s

ec
o

n
d

y = 2E-07x2 + 0.1054x + 18.927

0

50

100

0 200 400 600 800 1000

of Digits

O
ve

rh
ea

d
 e

n
er

g
y

co
n

su
m

p
ti

o
n

 i
n

 u
Jo

u
le

consumption will stay unchanged. On the other hand, for a processor with little parallel
processing capability like StrongArm SA-1100, the compiler automatically optimizes the
energy consumption when it optimizes the latency. In this case, compilation for low power
is the same as compilation for high performance.

5.4 Energy Consumption Breakdowns
JouleTrack gives the energy consumption breakdowns with level 2 simulation complexity.
For Algorithm 2 (Karatsuba-Ofman algorithm), when N=1024 and k=4, breakdowns are
showed in figure 5.3

Figure 5.3.
Figure 5.3 clearly demonstrate the memory access (both sequential and nonsequential)
consume more than half (55%) of the total energy.

6. Summary and Conclusion
6.1 Summary
The complexity for different modular exponentiation algorithm analyzed is summarized as
follows.

1.Karatsuba+Montgomery+ Multiply-and-Squaring

)(
4
9

)()(14),(
2

9
))((

23log3log

kAdd
k
N

MkAdd
k

N
kAdd

k
N

kkMul
k
NM

NTAverage Mont ++

















+






≈

2.Karatsuba + Nonrestoring+Multiply-and-Squaring












+






+






≈)(}14{),(

2
3

))((
23log3log

kAdd
k

N
k
N

kkMul
k
NM

NTAverage MAS

3. Standard + Non-restoring+Multiply-and-Squaring

)}()()())(4{(
2
3

))((2
2

2 kMul
k
N

kAdd
k

N
k
N

MNTAverage STD ++≈

4.Blakley+Multiply-and-Squaring

)(6))((
2

kAdd
k

N
MNTAverage Blakley ≈

35%

34%

21%

10%

Instruction
Seq Mem Access
Non-Seq Mem Access
Internal

For k=32, M=1024, suppose 1 Mul(k)= 3 Add(k), the complexity of 2-4 normalized by that
of 1 is showed in Figure 6.1.

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500

of digits of N

of

 e
qu

iv
al

en
t

ad
d(

k)
 n

or
m

al
iz

ed
 b

y
M

on
tg

om
er

y 2
3
4

Figure 6.1

For Montgomery Algorithm (1), the complexity for different values of k is showed in
Figure 6.2.

0

40000000

80000000

120000000

160000000

200000000

0 500 1000 1500 2000 2500

of digits of N#
o

f
eq

u
iv

al
en

t
ad

d
(k

)

k=16
k=32
k=64

Figure 6.2

6.2 Importance of algorithm choices
Wise choosing the algorithm will save efforts most. From the analysis of previous sections,
the best algorithm for modular exponentiation studied in this project is to use the
Karatsuba-Ofman algorithm for integer multiplication, use the Montgomery algorithm for
dealing with modular and use multi-and-square method for exponentiation.

6.3 Importance of efficient implementation for addition
All algorithm studied in this project are dominated by k x k-bit additions in both energy
consumption and latency as demonstrated in the previous sections. Unlike k x k-bit
multiplication, which can be done basically in parallel, these k x k-bit additions in most
cases are data dependent on each other. Therefore, the efficient implementation of k x k-bit
addition will be of extreme importance to balance latency and energy consumption.
Compared to addition, if k x k-bit multiplication is negligible in the overall latency and

6.4 Problem of Carry-in
The problem of the carry- in is pervasive in the modular exponentiation. Carry- ins are
treated as addition in most cases, which is not an efficient way. If the carry-in could be
taken into consideration efficiently, the improvement in latency and energy consumption
will be significant. In most cases, carry- in is 1 bit, that 0 or 1. A fast instruction, which
does conditional increment, will help a lot. The instruction takes two source operands, one
is 1-bit and the other k-bit, and increases the k-bit source by one if the 1-bit source is 1.

6.5 Parallelism.
There is a lot of parallelism in the multiplication of very long integers. The latency can be
significantly reduced if all the parallelism is utilized. Compiler and the ISA are of extreme
importance in this respect.

6.6 Cache/Memory Optimization
As Figure 5.3 demonstrates, cache/memory consumes more than half of the total energy.
Therefore, cache/memory access should be the first place for computer architects to look at
for reducing cryptographic algorithm energy consumption.

6.7 Problem of k
In this project, we assumed that the very long integer is of N-bit and all the arithmetic/logic
operations are done in the k-bit fashion. For instance, In a 16-bit processor, we have to use
16-bit arithmetic operations to implement N-bit arithmetic operations. On the other hand,
as nowadays processors are having 32-bit and 64-bit registers and data-bus, we have
several choices for k. For example, for 64-bit processors, we can let k=16, let each register
holds 4 operands, and use several 16 x 16-bit adders to do several additions in one
instruction. What is the best value for k? It depends on both the microarchitecture and the
ISA. In this project, we give both cost and latency of different ways to implement the
multiplication of very long integers. As section 1 and 2 detailed, the cost and the latency
are determined by the following several factors (Please refer to equation 1-5.).

1. The length of the operands, N,
2. The length of the basic addition and multiplication operands, k

3. The cost /latency of the basic addition, Add(k)
4. The cost/latency of the basic multiplication, Mul(k)
5. How much parallelism is utilized

Factor 1 is determined by the algorithm and cryptosystem requirements. Factor 3 and 4 are
determined by the micro-architecture. Factor 5 is determined by both micro-architecture
and ISA if the algorithm is fixed. To decide the value for k, we have to a lot of issues.
Algorithms have to be compared under given cryptosystem requirement, because different
algorithm scales differently when k changes given N. The micro-architecture has to be
evaluated with respect to how Add(k) and Mul(k) scale when k changes. ISA has to be
evaluated to see how much parallelism can be utilized.

Reference

C. K. Koc (1993), High-speed RSA implementation. RSA Data Security Conference,
Redwood City, California, January 14-15, 1993

V. Tiwari et al(1994), Power Analysis of Embedded Software: A First Step Towards
Software Power Minimization, , IEEE Transactions on VLSI Systems, December 1994.

JouleTrack, http://dry-martini.mit.edu/JouleTrack/

Source codes for the Karatsuba-Ofman algorithm
http://www.users.csbsju.edu/~cburch/proj/karat/

