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Abstract 

Modular Exponentiation for very large integers is the core of many modern cryptographic 
algorithms. Figure 0 shows how modular exponentiation is implemented in the essence of 
most algorithms. The basic building blocks are 1) modular algorithm, 2) multiplication of 
short integers and 3) addition of short integers. In this project, how the building blocks 
build up the modular exponentiation in popular algorithms is studied in terms of their 
complexity, parallelism and latency. Insights are found for tradeoff between energy 
consumption and performance for cryptosystem implementation. Moreover, the analyses 
shed insights for ISA and micro-architecture researches for cryptosystem. 
 

1. Standard Multiplication 
Suppose a and b are integers of N bits. ai is the ik  bit to 1)1( −+ ki  bit of a. bi is the ik  bit 
to 1)1( −+ ki  bit of b. Therefore, ai and bj are integers of k bits. The standard 
multiplication algorithm implement s N x N-bit multiplication by dividing N-bit integers 

into 
k
N

k-bit integers and doing k x k-bit multiplications/additions. 

1.1 the Algorithm and Complexity 

1.2 The algorithm is showed in Algorithm 1. Let 
k
N

s = . 

Input: a, b 
Output: t = a - b 
0. Initially ti : = 0 for all i = 0; 1,…, 2s-1. 
1. for i = 0  to s - 1 
2.  C := 0 
3.  for j = 0 to s- 1 
4.   (C, S) :=ti+j + aj* bi + C 
5.      ti+j := S 
6.   ti+s := C 
7. return (t2s -1t2s-2 

…  t0) 
Algorithm 1.  The Standard Multiplication Algorithm 

 
For line 4, we have four arithmetic operations which are shown in the Table 1.1. Let’s 
suppose all the operands are assigned to k-bit registers. 
 

+1 t i+j +C => (C,  S) 
*1  aj * bi =>(H, L) 

+2 H+C    => C  +3 L+S   =>(C’, S) 
+4  C’+C  => C  

Table 1.1 



 

It should be noted that H+C will not overflow. The data flow graph for line 4 is showed in 
Figure 1.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 0. What’re the building blocks?                                     Figure 1.1 

 

For Algorithm 1, we have 2)(4
k
N

 k x k-bit additions and 2)(
k
N

 k x k-bit multiplications. 

The complexity is  
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Standard multiplication can be reduced if a=b, which is true in the modular exponentiation 
detailed in section 4. For a=b, we have  
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1.2 Parallelism Analysis 
1.2.1 Without Consideration of Carry-Ins 
Now we are going to analyze how much operational parallelism there is. Figure 1.2 shows 

the case when 4==
k
N

s . 

All the multiplication can be carried out in parallel. To get 12,..,0for  −= siti , we have to 
add 3 k-bit integers for t1 and t6, 5 k-bit integers for t2 and t5, 7 k-bit integers for t3 and t4. 
 

We can generalize that we have to add 12 +i  k-bit integers for 1,..,0for  −=
k
N

iti  and add 
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Figure 1.2 
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Suppose our adder hardware adds two k-bit integers together each operation and output the 
carry- in and sum. The additions of those integers for it  can be done in a paralle l way. The 
latency-optimized way is to implement them in a sequence of a tree structure. For example, 
Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It’s optimal w.r.t the 
latency which is proportional to the number of levels the tree has. 
 
More generally, to add w  k-bit integers, the tree will have 1−w  nodes and 1log 2 +w  
levels. If we relax the number of operands for the adder hardware to m instead of 2, the 

latency-optimized way is the m-ary tree implementation. The tree will have 





−
−

1
1

m
w

 nodes 

and 1log +wm  levels. The number of nodes is the indicator of energy consumption while 
the number of the levels is the indicator of latency/performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 Binary Tree for a Series of Additions  
 
There is one way to implement Algorithm 1 so that the parallel is more utilized. That is, we 

can compute ,1
2
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iti  consecutively. If we implement the addition in the tree 
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On the other hand, we have 
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Applying Stirling’s approximation of n!, we have 
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Then the latency due to addition is 
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Moreover, all the k-bit multiplication can be done in parallel if we have enough hardware 
sources. Therefore, the latency for the implementation of Algorithm 1 in this way will be 
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(2) is significantly less than (1). This means if we utilize the parallelism in Algorithm 1, 
the performance could be significantly better. However, as we didn’t reduce the number of 
operations in the parallel implementation, (2) still holds for the energy consumption of 
Algorithm 1. 
 
1.2.2 Problem of Carry-In 
If the adder adds two integers together each time, the carry- in is always 1-bit. Carry- ins 
can be taken into consideration with a conditional increment operation (We’ll talk about 
this in the conclusion). 
 
If(C =1) increase S by 1.  
 

We showed that we have to add 12 +i  k-bit integers for 1,..,0for  −=
k
N

iti  and add 
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 k-bit integers for 1
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If we take all the carry-ins into consideration and treat them as additions, the latency will at 
most double for the implementation proposed in 1.2.1. 



 

2. Karatsuba-Ofman Algorithm 
 
Karatsuba-Ofman algorithm keeps on dividing the long integer into two shorter ones of 
equal sizes until their lengths are k. Karatsuba-Ofman algorithm gets the multiplication of 
two long integers by doing multiplications and additions on their divided parts of the half 
length. 
 
2.1 the Algorithm and Complexity 
Let a1 and a0 denote the higher and the lower halves of a, respectively. Let b1 and b0 
denote the higher and the lower halves of b, respectively. 

 
KORMA(a, b) 
1. if(a and b are of more than 2k bits) do 

2.  t0 : = KORMA(a0, b0)                                   // )
2

(
N

T  

3.  t2 : = KORMA(a1, b1)                                   // )
2

(
N

T  

4.   u0 : = KORMA(a1 + a0, b1 + b0)                   

// )
2

(2)1
2

(
N

Add
N

T ++  

5.    t1 : = u0 - t0 - t2                                                                   // )(2 NAdd   

6. else do 
7.  t0 : = a0*b0                
8.  t2 : = a1*b1 
9.   u0 : = (a1 + a0)*(b1 + b0) 
10.    t1 : = u0 - t0 - t2         

11. return ( 01
2

2 22 ttt
N

N ++ )   // ),2()
2
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Algorithm 2. Karatsuba-Ofman Algorithm 
 
Let T(N) denote the arithmetic/logic operations needed for NxN-bit multiplication. Then 
we have  
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Where Add(N) denotes the N x N bit operations. Note that line 11 only requires one 2N x N 
addition, which can be achieved with 2 consecutive NxN additions.  
 
On the other hand, if we implement (N/2+1)x(N/2+1) in the following way. 
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where a’ and b’ are one bit, we have 
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The control-data flow graph for line 4 of Algorithm 2 and computing )1
2

( +
N

Add  is 

showed in Figure 2.1. The critical path is showed with the thick dashed arrow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 +’ is 2-bit addition 
 
Then we have 
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If the recurrence stops when a and b are k bits, we have 
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                          (4) 
Table 2.1 shows the ratio of complexities for Algorithm 1 and Algorithm 2 for N and k of 
typical values (The complexity of Mul(k) is assumed to be 3 times that of Add(k)). 
 
 

)(
)(

NT
NT

KO

STD  
N=256 N=512 N=1024 N=2048 

k=16 1.30 1.74 2.31 3.08 
k=32 0.98 1.30 1.74 2.31 
k=64 0.73 0.98 1.30 1.74 

Table 2.1 
 
 



 

2.2 Parallelism Analysis 
Algorithm 2 is very desirable for parallel implementation due to its recurrent nature. As in 
section 1, let’s first forget about the carry- ins. All the k-bit multiplication in Algorithm 1 
can be done in parallel if we have enough hardware resources. All the W x W-bit 
multiplications can be done in parallel with the results from all the W/2 x W/2-bit 
multiplications. In line 4 of Algorithm 2, the two additions can be done in parallel.  
 
Figure 2.2 shows the data-flow graph for one recurrent level for Algorithm 2. The critical 
path is showed with the dashed arrow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 DFG for one recurrence of Algorithm 2 and the critical path 
 
According to Figure 2.2, the latency for KORMA(W) is 
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     (5) 
(5) is significantly less than (4). This means if we utilize the parallelism in Algorithm 2, 
the performance could be significantly better. However, as we didn’t reduce the number of 
operations in the parallel implementation, (4) still holds for the energy consumption of 
Algorithm 2. 
 
If we take all the carry- ins into consideration, the latency will at most double. 
 
For Algorithm 1, we have 
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for the parallel implementation proposed in section 1. The ratio of latencies for the two 

algorithms is 
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N=256 0.89 0.78 0.68 
N=512 1.04 0.94 0.83 
N=1024 1.20 1.09 0.98 
N=2048 1.35 1.24 1.14 

Table 2.2 Typical values for 
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Table 2.2 shows that Algorithm 1 is slightly better than Algorithm with respect to how 
much parallelism there is. However, Algorithm 2 still has significant advantages over 
Algorithm 1 with respect to the energy consumption. Moreover, when N gets larger and 
larger, (2) will scale faster than (5) and finally lose its advantage. 
 
 
 
 



 

3. Modular Multiplication. 
Suppose a is a 2N-bit integer and n is a N-bit integer. 
 
3.1 Direct Modular Algorithms  
 
3.1.1 Restoring Division Algorithm and Complexity 

 
Input: a, n 
Output: R = a mod n 
1. R0 := a 
2. n := 2N n     ),( NNShift  
3. for i = 1  to  N 
4.  Ri := R i-1- n    )2,2( NNAdd  
5.  if Ri < 0 then R i := Ri-1   condition  
6.  n := n/2     )1,2( NShift  
7. return Rk 

 
Algorithm 3. The Restoring Division Algorithm 1. 

 
The cost for Algorithm 3 is  
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Input: a, n 
Output: R = a mod n 
1. R0 := a 
2. n := 2N n       // ),( NNShift  
3. for i = 1  to  N 
4.  if(the most significant bit of Ri-1 is 0) do  // condition  
5.         Ri := R i-1 
6.  else do Ri := R i-1- n      // )2,2( NNAdd  
7.   if Ri < 0 then R i := Ri-1    // condition  
8.  n := n/2      // )1,2( NShift  
9. return Rk 

Algorithm 3.1 The Restoring Division Algorithm 2 
 
 
 



 

3.1.2 Norestoring Division Algorithm and Complexity 
 

Input: a, n 
Output: R = a mod n 
1. R0 := a 
2. n := 2Nn        // ),( NNShift  
3. for i = 1  to N 
4.  if Ri-1 > 0        // condition  
5.   then R i := Ri-1- n      // )2,2( NNAdd  
6.  else R i := Ri-1 + n     // )2,2( NNAdd  
7.  n := n/2      // )1,2( NShift  
8. if Rk < 0 then R := R + n     // condition ,  

)2,2( NNAdd  
9. return Rk 

Algorithm 4. The Nonrestoring Division Algorithm 
 
The cost for Algorithm 4 is 
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3.1.3 a*b mod n 
Suppose the Karatsuba-Ofman algorithm is used for multiplication and the non-restoring 
division algorithm is applied for modular. If a, b and n are N-bit integers, the cost for a* b 
mod n is 

conditionNkAdd
k

N
NMulNT *)()()(

2

++≈  

conditionNkAdd
k

N
kAdd

k
N

kkMul
k
N

*)()(14),(
23log3log

++





+






≈  

conditionNkAdd
k

N
k
N

kkMul
k
N

*)(}14{),(
23log3log

++





+






≈  

 
3.1.4 Parallelism Analysis 
The control-data flow graph for a latency-optimized implementation for the nonrestoring 
division algorithm line 4-7 is showed in Figure 3.1 
 
If the algorithm is implemented in the way of figure 3.1,  
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The parallelism in the direct modular algorithms is very limited. 
 



 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.1 
 
3.2 Blakley Algorithm 
 
Blakley's method directly computes a*b mod n by interleaving the shift-add steps of the 
multiplication and the shift-subtract steps of the division. 
 

Input: a, b, n 
Output: R = a*b mod n 
1. R : = 0 
2. for i = 0  to N-1 
3.  R := 2R + aN –1- i*b                 // conditionNAddNShift ++ )()1,(  
4.  R := R mod n               // )(42 NAddcondition +                 
5. return R 

Algorithm 5. The Blakley Algorithm 
 
After line 3, 330 −≤≤ nR . Therefore, line 4 is equal to 
 
4.1 If nR ≥  do     // conditionNAdd +)(  
4.2 R:=R-n     // )(NAdd  
4.3 If nR ≥  do     // conditionNAdd +)(  
4.4 R:=R-n     // )(NAdd  
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N
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 If we ignore all the Shift and condition, we have for Blakley algorithm 
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Suppose the cost for Mul(k) is 3 times of the cost for Add(k). Then we have the following 
tables for different N and k. 
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Ri-1  

+ - Sh-1 

MUX 

n 

Update n 

Ri 



 

)(

)(

NT

NT

KO

Blakley  
N=256 N=512 N=1024 N=2048 

k=16 2.99 3.19 3.36 3.50 
k=32 3.27 3.42 3.55 3.65 
k=64 3.48 3.60 3.69 3.76 

Table 3.1 
 

Table 3.1 shows that the Karatsuba-Ofman+Non-restoring division is much better than 
Blakley with regard to the cost computed as the number of k x k-bit add and 
multiplications. 
 
3.2.1 Parallelism Analysis 
Blakley Algorithm has little parallelism. In this respect, Blakley Algorithm is much worse 
than other choices. 
 
3.3Montgomery Algorithm 
 
a,b and n are N-bit integers. r =2N and gcd(r,n)=1. Let n’ be the integer so that r* r -1-n* 

n’=1.  
 
3.3.1 The Algorithm and Complexity 

The Montgomery Product Algori thm 
u=a*b*r -1 mod n 
 
function MonPro(a, b) 
1. t :=  a*b     // )(NMul  
2. m := t*n’ mod r    // )(NMul  
3. u := (t + m*n)/r    // )(),2(2)( NAddNNShiftNMul ++  
4. if nu ≥  then return u-n   // )()( NAddconditionNAdd ++  

else return u 
 

The Montgomery Multiplication Algorithm 
 

function ModMul(a, b, n) { n is an odd number} 
1. Compute n’ using the extended Euclidean algorithm. 
2. a’ := a*r mod n

 // )}1,2()2(
2
1

{),(2 NShiftconditionNAddNNNShift +++  

3. x := MonPro(a’, b)

 // conditionNNShiftNAddNMul +++ ),2(2)(
2
3

)(3  

4. return x 
Algorithm 6. The Montgomery Multiplication Algorithm 

 



 

The average cost for Alorithm 6 is 

conditionNNShiftNAddNMulNTAverage +++= ),2(2)(
2
3

)(3))((

)}1,2()2(
2
1

{),(2 NShiftconditionNAddNNNShift ++++  

conditionNNAddNNMul *)(*)(3 ++≈  
Compared with the Karatsuba-Ofman and Non-restoring division solution, it has no 
complexity advantage. However, we’ll later show that Montgomery algorithm is much 
better when a sequence of multiplications is to be performed, which is the case in modular 
exponentiation. 
 
3.3.2 Parallelism Analysis 
Parallelism in the Montgomery modular multiplication algorithm is very little. 
 

4. Modular Exponentiation 
 

Suppose e is an M-bit integer. x = ae mod n. n is an odd number. n and a are N-bit integers. 
 
Karatsuba-Ofman Algorithm is chosen to do multiplication here. This algorithm requires 
much less computational resources than the standard algorithm, although the later is a little 
bit better with respect to parallel implementation. 
 
From multiplication to exponentiation, the most popular way is the multiply-and-square 
way, which includes m-ary methods.  
 
For binary multiply-and-square algorithm, averagely, we need M NxN-bit modular square 
and M/2 NxN modular multiplication. 4.1 and 4.2 detail the modular exponentiations built 
from different  modular algorithms examined in section 3. 
 
4.1 Karatsuba-Ofman + Nonrestoring division +Multiply-and-Square Algorithm 
For Karatsuba-Ofman algorithm, square and multiplication are same in computation. 
Therefore, averagely, we need 3M/2 multiplication and 3M/2 non-restoring division. 
Therefore, according to section 3, we have 
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4.2 Karatsuba-Ofman+Montgomery Modular +Multiply-and-Square Algorithm 
 

function ModExp(a, e, n) f n is an odd number g 
1. Compute n’ using the extended Euclidean algorithm. 
2. a’ := a* r mod n                                    

 // )}1,2()2(
2
1

{),(2 NShiftconditionNAddNNNShift +++  

3. x’ :=  r mod n 
4. for i = M-1 down to 0 do 
5.  x := MonPro(x’, x’)  

 // conditionNNShiftNAddNMul +++ ),2(2)(
2
3

)(3  

6.  if ei = 1then  x’ := MonPro( a’, x’) 

 // conditionNNShiftNAddNMul *2),2(2)(
2
3

)(3 +++  

7. x := MonPro(x’,1) 
8. return x 
 
Algorithm 7. Montgomery Modular Exponentiation Algorithm 

 
 
For Algorithm 7, we have 
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Obviously, Montgomery Algorithm is much better than the Nonrestoring division 
+Multiply-and-Square method.. 
 
If we assume the Mul(k) cost is 3 times of the Add(k) cost, we have the following table.  
 

))(/)(( NTNTAverage MontMAS  N=1024,k=16 N=1024,k=32 N=1024,k=64 

M=1 0.96 1.08 1.18 
M=4 1.62 2.06 2.58 
M=16 1.95 2.67 3.67 
M=64 2.05 2.89 4.11 
M=256 2.08 2.95 4.23 
M=1024 2.09 2.96 4.26 

Table 4.1 
 

Table 4.1 clearly demonstrates Montgomery algorithm’s advantage over other choices for 
doing a sequence of modular multiplication as in modular exponentiation. The reason is 
the cost of line 2 in ModExp is amortized by M. In section 3.3.1, it is not amortized in 



 

ModMul, which is the reason why Montgomery algorithm is not good for doing modular 
multiplication. 

 
5. Experiments 

 
Different algorithms for multiplication, modular multiplication and modular 
exponentiation are implemented in C. We rely on the compiler to do codes optimization for 
parallelism and register assignments. 
 
5.1 Software Power Estimation 
People proposed methods to estimate the energy consumption for processor instructions, 
which is called the instruction- level power estimation. If the energy consumption for each 
instruction is known, switching energy consumption between different instructions, cache 
miss and memory accessing energy consumption are taken into consideration, the energy 
consumption for the software can be estimated with reasonable accuracy [Tiwari et al, 
1994]. 
 
Researchers in MIT developed a web-based software profiling tool, JouleTrack, that 
estimates the energy consumption of software on three standard processors. The user can 
upload the code, select the available processor operating conditions, memory maps, and 
compilation options and get a cycle accurate report of the program execution, along with 
energy statistics [Joule Track].  
 
We use the StrongARM SA-1100 software profiler to estimate the energy consumption of 
our algorithms implemented in C if it is run on StrongARM SA-1100. (StrongARM 
processor is proposed for the portable computing devices for which the energy 
consumption is critical). 
 
5.2 Multiplication 
 
Profiling Environment: 
StrongARM SA-1100 Energy Profiling Results  
Operating frequency       206MHz 
Operating voltage          1.5 Volts 
Simulation level             0 
 
Figure 5.1a shows the energy consumption of Algorithm 1 and. Algorithm 2 for N of 
various lengths. Here N denotes the number of digits instead bits. One digit is equal to 

10log 2  bits. The k for the Karatsuba-Ofman Algorithm (Algorithm 2) here is fixed as 4. 
Figure 5.1b shows the performance, in term of latency, of Algorithm 1 and Algorithm 2 for 
N of the same values. It’s obviously that Algorithm 2 is much better. 
 



 

 
 

 
 
 

 

 
 
 
 

 
a. Energy Consumption                                                           b. Latency 

 
Figure 5.1 

The dashed line is for Algorithm 1 and the solid for Algorithm2 
 
There are overhead codes like variable declaration and initialization. The energy 
consumption for the overhead is showed in Figure 5.2a. It is almost linear with respect to 
the number of digits. 
 

 
 
 
 

 
 
 
 
 

 
a. Energy Consumption for the Overhead         b. Latency/Energy consumption Correlation 

Figure 5.2 
 
5.3 Correlation between Latency and Energy Consumption 
For StrongArm SA-1100, we found that the energy consumption is proportional to the 
performance in terms of latency. The longer the algorithm keeps the processor running, the 
more energy consumption. Taking Figure 5.1 for example, Figure 5.2b shows the ratio of 
energy consumption and latency of Algorithm 1 is almost constant for N of various lengths. 
 
However, StrongArm SA-1100 doesn’t utilize the parallelism of the software very much 
like VLIW processors do. As showed in section 1, if the processor can utilize the 
parallelism in the algorithm, the latency can be significantly reduced while the energy 
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consumption will stay unchanged. On the other hand, for a processor with little parallel 
processing capability like StrongArm SA-1100, the compiler automatically optimizes the 
energy consumption when it optimizes the latency. In this case, compilation for low power 
is the same as compilation for high performance. 
 
5.4 Energy Consumption Breakdowns 
JouleTrack gives the energy consumption breakdowns with level 2 simulation complexity. 
For Algorithm 2 ( Karatsuba-Ofman algorithm), when N=1024 and k=4, breakdowns are 
showed in figure 5.3 

 
 

 
 
 
 
 
 

 
 

Figure 5.3. 
Figure 5.3 clearly demonstrate the memory access (both sequential and nonsequential) 
consume more than half (55%) of the total energy. 
 
 

6. Summary and Conclusion 
6.1 Summary 
The complexity for different modular exponentiation algorithm analyzed is summarized as 
follows. 
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2.Karatsuba + Nonrestoring+Multiply-and-Squaring 
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3. Standard + Non-restoring+Multiply-and-Squaring 
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4.Blakley+Multiply-and-Squaring 
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For k=32, M=1024, suppose 1 Mul(k)= 3 Add(k), the complexity of 2-4 normalized by that 
of 1 is showed in Figure 6.1. 
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Figure 6.1 
 
For Montgomery Algorithm (1), the complexity for different values of k is showed in 
Figure 6.2.  
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6.2 Importance of algorithm choices 
Wise choosing the algorithm will save efforts most. From the analysis of previous sections, 
the best algorithm for modular exponentiation studied in this project is to use the 
Karatsuba-Ofman algorithm for integer multiplication, use the Montgomery algorithm for 
dealing with modular and use multi-and-square method for exponentiation. 
 
6.3 Importance of efficient implementation for addition 
All algorithm studied in this project are dominated by k x k-bit additions in both energy 
consumption and latency as demonstrated in the previous sections. Unlike k x k-bit 
multiplication, which can be done basically in parallel, these k x k-bit additions in most 
cases are data dependent on each other. Therefore, the efficient implementation of k x k-bit 
addition will be of extreme importance to balance latency and energy consumption. 
Compared to addition, if k x k-bit multiplication is negligible in the overall latency and  
 
6.4 Problem of Carry-in  
The problem of the carry- in is pervasive in the modular exponentiation. Carry- ins are 
treated as addition in most cases, which is not an efficient way. If the carry-in could be 
taken into consideration efficiently, the improvement in latency and energy consumption 
will be significant. In most cases, carry- in is 1 bit, that 0 or 1. A fast instruction, which 
does conditional increment, will help a lot.  The instruction takes two source operands, one 
is 1-bit and the other k-bit, and increases the k-bit source by one if the 1-bit source is 1. 
 
6.5 Parallelism. 
There is a lot of parallelism in the multiplication of very long integers. The latency can be 
significantly reduced if all the parallelism is utilized. Compiler and the ISA are of extreme 
importance in this respect. 
 
6.6 Cache/Memory Optimization 
As Figure 5.3 demonstrates, cache/memory consumes more than half of the total energy. 
Therefore, cache/memory access should be the first place for computer architects to look at 
for reducing cryptographic algorithm energy consumption. 
 
6.7 Problem of k 
In this project, we assumed that the very long integer is of N-bit and all the arithmetic/logic  
operations are done in the k-bit fashion. For instance, In a 16-bit processor, we have to use 
16-bit arithmetic operations to implement N-bit arithmetic operations. On the other hand, 
as nowadays processors are having 32-bit and 64-bit registers and data-bus, we have 
several choices for k. For example, for 64-bit processors, we can let k=16, let each register 
holds 4 operands, and use several 16 x 16-bit adders to do several additions in one 
instruction.  What is the best value for k? It depends on both the microarchitecture and the 
ISA. In this project, we give both cost and latency of different ways to implement the 
multiplication of very long integers. As section 1 and 2 detailed, the cost and the latency 
are determined by the following several factors (Please refer to equation 1-5.). 
 

1. The length of the operands, N, 
2. The length of the basic addition and multiplication operands, k 



 

3. The cost /latency of the basic addition, Add(k) 
4. The cost/latency of the basic multiplication, Mul(k) 
5. How much parallelism is utilized 

 
Factor 1 is determined by the algorithm and cryptosystem requirements. Factor 3 and 4 are 
determined by the micro-architecture. Factor 5 is determined by both micro-architecture 
and ISA if the algorithm is fixed. To decide the value for k, we have to a lot of issues. 
Algorithms have to be compared under given cryptosystem requirement, because different 
algorithm scales differently when k changes given N. The micro-architecture has to be 
evaluated with respect to how Add(k) and Mul(k) scale when k changes. ISA has to be 
evaluated to see how much parallelism can be utilized. 
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